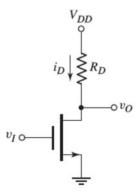

ECE 424 Introduction to VLSI


Home Work 1 (Due to 03.11.2014)

NOTE: In the following problems, assume T = 300 K.

- Q1) Plot the I_d versus V_{ds} (for different V_{gs} voltages) characteristics, for an n-channel MOS transistor of L=150nm, W=800 nm, mobility=1830 cm²/Vs, relative permittivity=11.7, t_{ox} =120 angstrom, using MATLAB. **NOTE:** Print out your results and explanations (including MATLAB codes) for this problem.
- Q2) The depletion load NMOS inverter below is biased at V_{DD} =3V. The transistor parameters are k'_n =60 μ A/V², (W/L) $_D$ =6, (W/L) $_L$ =2, V $_{TND}$ =0.4V, and V $_{TNL}$ =-0.8V.
 - (a) Determine v_o for $v_i = 3V$.
 - (b) Find the transition points for the driver and the load.
 - (c) Calculate the power dissipation in the inverter for $v_i = 3V$.

- Q3) (a) Redesign the resistive load inverter below so that the maximum power dissipation is 0.25 mW with $V_{DD} = 3.3 \text{ V}$ and $v_O = 0.15 \text{ V}$ when the input is a logic 1.
 - (b) Using the results of part (a), what is the input voltage range when the transistor is biased in the saturation region? Assume transistor parameters of $V_{TN} = 0.5 \text{ V}$ and $k'_n = 100 \mu \text{A/V}^2$.

- Q4) The NMOS inverter with depletion load above is biased at $V_{DD} = 2.5$ V. The transistor parameters are $V_{TND} = 0.5$ V and $V_{TNL} = -1$ V. The width-to-length ratio of the load device is W/L = 1. Assume $k'_{n} = 100 \mu A/V^{2}$.
 - (a) Design the driver transistor such that $v_0 = 0.05 \text{ V}$ when the input is a logic 1.
 - (b) What is the power dissipated in the circuit when $v_I = 2.5 \text{ V}$?