ECE 424 Introduction to VLSI

Home Work 3 (Due to the Final Exam)

Q1) (a) For the circuit below, make a table showing the state of each transistor ("on" or "off "), and determine the output voltages *vo1*, *vo2*, and *vo3* for the input logic states listed in the following table. Assume the input conditions are sequential in time from state 1 to state 6. (b) What logic function does the circuit implement?

State	CLK	v_X	v_Y	v_Z
1	0	0	0	0
2	1	1	1	1
3	0	0	0	0
4	1	0	1	1
5	0	0	0	0
6	1	1	0	1

Q2) Consider the circuit below. (a) Determine the value of Y for (i) A = B = 0; (ii) A = 2.5 V, B = 0; (iii) A = 0, B = 2.5 V; and (iv) A = B = 2.5 V. (b) What is the logic function implemented by the circuit?

Q3) Consider the NMOS R-S flip-flop below biased at $V_{DD} = 2.5$ V. The threshold voltages are 0.4 V (enhancement-mode devices) and -0.6 V (depletion-mode devices). The conduction parameters are $K_3 = K_6 = 40\mu A/V^2$, $K_2 = K_5 = 100\mu A/V^2$, and $K_1 = K_4 = 150\mu A/V^2$. If Q = logic 0 and \overline{Q} = logic 1 initially, determine the voltage at *S* that will cause the flip-flop to change states.

Q4) The circuit below is an example of a D flip-flop. (a) Explain the operation of the circuit. Is this a positive- or negative-edge-triggered flipflop? (b) Redesign the circuit to make this a static flip-flop.

Q5) Show that the circuit below is a J–K flip-flop.

