Chapter 9

IC Fabrication Process Overview
Objectives

After studying the material in this chapter, you will be able to:

1. Draw a diagram showing how a typical wafer flows in a sub-micron CMOS IC fab.
2. Give an overview of the six major process areas and the sort/test area in the wafer fab.
3. For each of the 14 CMOS manufacturing steps, describe its primary purpose.
4. Discuss the key process and equipment used in each CMOS manufacturing step.
Major Fabrication Steps in MOS Process Flow

Oxidation (Field oxide)

Photoresist Coating

Mask-Wafer Alignment and Exposure

Exposed Photoresist

Photoresist Develop

Oxide Etch

Photoresist Strip

Oxidation (Gate oxide)

Polysilicon Deposition

Polysilicon Mask and Etch

Ion Implantation

Active Regions

Nitride Deposition

Contact Etch

Metal Deposition and Etch

Used with permission from Advanced Micro Devices
CMOS Process Flow

• Overview of Areas in a Wafer Fab
 – Diffusion
 – Photolithography
 – Etch
 – Ion Implant
 – Thin Films
 – Polish

• CMOS Manufacturing Steps

• Parametric Testing

• 6~8 weeks involve 350-step
Model of Typical Wafer Flow in a Sub-Micron CMOS IC Fab

6 major production areas
Diffusion: Simplified Schematic of High-Temperature Furnace

Can do: oxidation, diffusion, deposition, anneals, and alloy
Photolithography Bay in a Sub-micron Wafer Fab

Yellow fluorescent: do not affect photoresist
Simplified Schematic of a Photolithography Processing Module

Note: wafers flow from photolithography into only two other areas: etch and ion implant
Simplified Schematic of Dry Plasma Etcher

- Gas distribution baffle
- Anode electrode
- Electromagnetic field
- Free electron
- Ion sheath
- Chamber wall
- Etchant gas entering gas inlet
- Positive ion
- Radical chemical
- Vacuum line
- Exhaust to vacuum pump
- High-frequency energy
- RF coax cable
- Photon
- Glow discharge (plasma)
- Vacuum gauge
- Wafer
- Cathode electrode
- Flow of byproducts and process gases
- Exhaust to vacuum pump
Simplified Schematic of Ion Implanter

Figure 9.6
Thin Film Metallization Bay

Photo courtesy of Advanced Micro Devices

Semiconductor Manufacturing Technology
by Michael Quirk and Julian Serda

Photo 9.2
Simplified Schematics of CVD Processing System

Figure 9.7
Polish Bay in a Sub-micron Wafer Fab

Photo courtesy of Advanced Micro Devices
CMOS Manufacturing Steps

1. Twin-well Implants
2. Shallow Trench Isolation
3. Gate Structure
4. Lightly Doped Drain Implants
5. Sidewall Spacer
6. Source/Drain Implants
7. Contact Formation
8. Local Interconnect
9. Interlayer Dielectric to Via-1
10. First Metal Layer
11. Second ILD to Via-2
12. Second Metal Layer to Via-3
13. Metal-3 to Pad Etch
14. Parametric Testing

Semiconductor Manufacturing Technology
by Michael Quirk and Julian Serda
n-well Formation

- Epitaxial layer: improved quality and fewer defect
- In step 2, initial oxide: (1) protects epi layer from contamination, (2) prevents excessive damage to ion/implantation, (3) control the depth of the dopant during implantation
- In step 5, anneal: (1) drive-in, (2) repair damage, (3) activation
p-well Formation

Figure 9.9
STI Trench Etch

STI: shallow trench isolation

1. Barrier oxide: a new oxide
2. Nitride: (1) protect active region, (2) stop layer during CMP
3. 3rd mask
4. STI etching
STI Oxide Fill

1. Liner oxide to improve the interface between the silicon and trench CVD oxide
2. CVD oxide deposition
STI Formation

1. Trench oxide polish (CMP): nitride as the CMP stop layer since nitride is harder than oxide
2. Nitride strip: hot phosphoric acid
Poly Gate Structure Process

1. Oxide thickness 1.5 ~ 5.0 nm is thermal grown
2. Poly-Si ~ 300 nm is doped and deposited in LPCVD using SiH4
3. Need Antireflective coating (ARC), very critical
4. The most critical etching step in dry etching
n⁻ LDD Implant

1. LDD: lightly doped drain to reduce S/D leakage
2. Large mass implant (BF₂, instead of B, As instead of P) and amorphous surface helps maintain a shallow junction
3. 5ᵗʰ mask
1. 6th mask
2. In modern device, high doped drain is used to reduce series resistance. It called S/D extension
Side Wall Spacer Formation

Spacer is used to prevent higher S/D implant from penetrating too close to the channel
n+ Source/Drain Implant

1. Energy is high than LDD I/I, the junction is deep
2. 7th mask
p+ Source/Drain Implant

1. 8th mask
2. Using rapid thermal anneal (RTA) to prevent dopant spreading and to control diffusion of dopant
Contact Formation

1. Titanium (Ti) is a good choice for metal contact due to low resistivity and good adhesion
2. No mask needed, called self-align
3. Using Ar to sputtering metal
4. Anneal to form TiSi2, tisilicide
5. Chemical etching to remove unreact Ti, leaving TiSi2, called selective etching
LI Oxide as a Dielectric for Inlaid LI Metal (Damascene)

Damascene: a name doped of year ago from a practice that began thousands ago by artist in Damascus, Syria

LI: local interconnection
LI Oxide Dielectric Formation

1. Nitride: protect active region
2. Doped oxide
3. Oxide polish
4. 9th mask
LI Metal Formation

Ti/TiN is used: Ti for adhesion and TiN for diffusion barrier

Tungsten (W) is preferred over Aluminum (Al) for LI metal due to its ability to fill holes without leaving voids
Via-1 Formation

1. Interlayer dielectric (ILD): insulator between metal
2. Via: electrical pathway from one metal layer to adjacent metal layer
3. 10th mask
Plug-1 Formation

1. Ti layer as a glue layer to hold W
2. TiN layer as the diffusion barrier
3. Tungsten (W) as the via
4. CMP W-polish

Figure 9.24

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda
SEM Micrographs of Polysilicon, Tungsten LI and Tungsten Plugs

Micrograph courtesy of Integrated Circuit Engineering

Photo 9.4

Semiconductor Manufacturing Technology
by Michael Quirk and Julian Serda
Metal-1 Interconnect Formation

1. Metal stack: Ti/Al (or Cu)/TiN is used
2. Al(99%) + Cu (1%) is used to improve reliability
3. 11th mask
SEM Micrographs of First Metal Layer over First Set of Tungsten Vias

Micrograph courtesy of Integrated Circuit Engineering

Photo 9.5
Via-2 Formation

1. Gap fill: fill the gap between metal
2. Oxide deposition
3. Oxide polish
4. 12th mask

Figure 9.26
Plug-2 Formation

1. Ti/TiN/W
2. CMP W polish
Metal-2 Interconnect Formation

1. Metal 2: Ti/Al/TiN
2. ILD-3 gap filling
3. ILD-3
4. ILD-polish
5. Via-3 etch and via deposition, Ti/TiN/W
1. Passivation layer of **nitride** is used to protect from moisture, scratched, and contamination

2. ILD-6: **oxide**
SEM Micrograph of Cross-section of AMD Microprocessor

Mag. 18,250 X
Micrograph courtesy of Integrated Circuit Engineering
Wafer Electrical Test using a Micromanipulator Prober (Parametric Testing)

1. After metal-1 etch, wafer is tested, and after passivation test again
2. Automatically test on wafer, sort good die (X-Y position, previous marked with red ink)
3. Before package, wafer is backgrind to a thinner thickness for easier slice and heat dissipation

Photo courtesy of Advanced Micro Devices
Chapter 9 Review

- Summary 222
- Key Terms 223
- Review Questions 223
- SMT Web Site 224
- References 224